This study investigates the position bias in information retrieval, where models tend to overemphasize content at the beginning of passages while neglecting semantically relevant information that appears later. To analyze the extent and impact of position bias, we introduce a new evaluation framework consisting of two position-aware retrieval benchmarks (SQuAD-PosQ, FineWeb-PosQ) and an intuitive diagnostic metric, the Position Sensitivity Index (PSI), for quantifying position bias from a worst-case perspective. We conduct a comprehensive evaluation across the full retrieval pipeline, including BM25, dense embedding models, ColBERT-style late-interaction models, and full-interaction reranker models. Our experiments show that when relevant information appears later in the passage, dense embedding models and ColBERT-style models suffer significant performance degradation (an average drop of 15.6%). In contrast, BM25 and reranker models demonstrate greater robustness to such positional variation. These findings provide practical insights into model sensitivity to the position of relevant information and offer guidance for building more position-robust retrieval systems. Code and data are publicly available at: https://github.com/NovaSearch-Team/position-bias-in-IR.
翻译:本研究探讨信息检索中的位置偏差问题,即模型倾向于过度强调段落开头的文本内容,而忽略后续出现的语义相关信息。为分析位置偏差的程度与影响,我们提出一个包含两个位置感知检索基准(SQuAD-PosQ、FineWeb-PosQ)的新型评估框架,并设计了一种直观的诊断指标——位置敏感指数(PSI),用于从最坏情况视角量化位置偏差。我们在完整检索流程中进行了全面评估,涵盖BM25、稠密嵌入模型、ColBERT式延迟交互模型以及全交互式重排序模型。实验表明,当相关信息出现在段落较后位置时,稠密嵌入模型与ColBERT式模型性能显著下降(平均降幅达15.6%)。相比之下,BM25与重排序模型对此类位置变化表现出更强的鲁棒性。这些发现为理解模型对相关信息位置的敏感性提供了实践依据,并为构建更具位置鲁棒性的检索系统提供了指导。代码与数据已公开于:https://github.com/NovaSearch-Team/position-bias-in-IR。