Publishing graph statistics under node differential privacy has attracted much attention since it provides a stronger privacy guarantee than edge differential privacy. Existing works related to node differential privacy assume a trusted data curator who holds the whole graph. However, in many applications, a trusted curator is usually not available due to privacy and security issues. In this paper, for the first time, we investigate the problem of publishing the graph degree distribution under Node Local Differential privacy (Node-LDP), which does not rely on a trusted server. We propose an algorithm to publish the degree distribution with Node-LDP by exploring how to select the optimal graph projection parameter and how to execute the local graph projection. Specifically, we propose a Crypto-assisted local projection method that combines LDP and cryptographic primitives, achieving higher accuracy than our baseline PureLDP local projection method. On the other hand, we improve our baseline Node-level parameter selection by proposing an Edge-level parameter selection that preserves more neighboring information and provides better utility. Finally, extensive experiments on real-world graphs show that Edge-level local projection provides higher accuracy than Node-level local projection, and Crypto-assisted parameter selection owns the better utility than PureLDP parameter selection, improving by up to 79.8% and 57.2% respectively.
翻译:在节点差分隐私的情况下发布图统计信息已经引起了广泛关注,因为它提供的隐私保障比边差分隐私更强。已有的与节点差分隐私相关的工作都假定了一个持有整个图的可信数据管理员。然而,在许多应用中,由于隐私和安全问题,往往没有可信的管理员可用。本文首次研究了在没有可信服务器的情况下使用节点本地差分隐私(Node-LDP)发布图的度分布的问题。我们提出了一种算法,通过探索如何选择最优的图投影参数和如何执行本地图投影来使用Node-LDP发布度分布。具体地,我们提出了一种密码学辅助的本地投影方法,将LDP和密码学原语相结合,实现更高的精度比我们的基线PureLDP本地投影方法。另一方面,我们通过提出保留更多邻居信息且提供更好效用的边级参数选择,改进了我们的基线节点级参数选择。最后,在真实世界的图上进行的广泛实验表明,Edge-level本地投影提供的精度高于Node-level本地投影,而Crypto-assisted参数选择拥有更好的效用比PureLDP参数选择,分别提高了最多79.8%和57.2%。