We introduce Balboa, a link obfuscation framework for censorship circumvention. Balboa provides a general framework for tunneling data through existing applications. Balboa sits between an application and the operating system, intercepting outgoing network traffic and rewriting it to embed data. To avoid introducing any distinguishable divergence from the expected application behavior, Balboa only rewrites traffic that matches an externally specified \emph{traffic model} pre-shared between the communicating parties. The traffic model captures some subset of the network traffic (e.g., some subset of music an audio streaming server streams). The sender uses this model to replace outgoing data with a pointer to the associated location in the model and embed data in the freed up space. The receiver then extracts the data, replacing the pointer with the original data from the model before passing the data on to the application. When using TLS, this approach means that application behavior with Balboa is \emph{equivalent}, modulo small (protocol-dependent) timing differences, to if the application was running without Balboa. Balboa differs from prior approaches in that it (1) provides a framework for tunneling data through arbitrary (TLS-protected) protocols/applications, and (2) runs the unaltered application binaries on standard inputs, as opposed to most prior tunneling approaches which run the application on non-standard -- and thus potentially distinguishable -- inputs. We present two instantiations of Balboa -- one for audio streaming and one for web browsing -- and demonstrate the difficulty of identifying Balboa by a machine learning classifier.


翻译:我们引入了 Balboa, 是一个用于规避审查的连接模糊框架 。 Balboa 提供了一个通过现有应用程序进行隧道化数据的一般框架 。 Balboa 位于应用程序和操作系统之间, 拦截网络流出流量, 并重新写入数据 。 为了避免引入与预期应用行为有区别的差异, 我们引入 Balboa 只能重写与外部指定的 emph{traffic 模型} 通信方之间预共享的通信。 交通模式包含网络流量的某些子集( 例如, 音乐中的某个子集, 一个音频流服务器流流流流 ) 。 发送者使用此模式替换输出数据, 将数据插入到一个相关操作系统, 在将数据传输到应用程序之前, Balboa 仅重用原始数据替换 。 当使用 TLS 时, 这种方法意味着 Balboa 的应用程序是 emph { 等值 }, 使用一个可移动的音路路( ) 小( robol) 和 取决于时间差异), 如果应用程序运行在 Balboa 上没有 Balboa, 和 binLS 之前的两种操作操作操作 方法,,, 。 因此 和 运行 将 将 规则 显示 和 规则 上 的 的,, 使用 规则,, 使用,,, 使用 的 规则, 。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
52+阅读 · 2020年9月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年5月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Seeding with Costly Network Information
Arxiv
0+阅读 · 2021年6月4日
Arxiv
5+阅读 · 2021年2月15日
Hierarchical Graph Capsule Network
Arxiv
20+阅读 · 2020年12月16日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
5+阅读 · 2019年5月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员