Recent research efforts indicate that federated learning (FL) systems are vulnerable to a variety of security breaches. While numerous defense strategies have been suggested, they are mainly designed to counter specific attack patterns and lack adaptability, rendering them less effective when facing uncertain or adaptive threats. This work models adversarial FL as a Bayesian Stackelberg Markov game (BSMG) between the defender and the attacker to address the lack of adaptability to uncertain adaptive attacks. We further devise an effective meta-learning technique to solve for the Stackelberg equilibrium, leading to a resilient and adaptable defense. The experiment results suggest that our meta-Stackelberg learning approach excels in combating intense model poisoning and backdoor attacks of indeterminate types.


翻译:近期研究表明,联邦学习(FL)系统易受多种安全威胁。尽管已有诸多防御策略被提出,但这些策略主要针对特定攻击模式设计,缺乏适应性,在面对不确定或自适应攻击时效果有限。本研究将对抗性联邦学习建模为防御方与攻击方之间的贝叶斯Stackelberg马尔可夫博弈(BSMG),以解决对不确定自适应攻击适应不足的问题。我们进一步设计了一种有效的元学习技术来求解Stackelberg均衡,从而构建出具有韧性与适应性的防御机制。实验结果表明,我们的元Stackelberg学习方法在抵御类型不确定的强模型投毒攻击和后门攻击方面表现优异。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年6月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员