The success of SQL, NoSQL, and NewSQL databases is a reflection of their ability to provide significant functionality and performance benefits for specific domains, such as financial transactions, internet search, and data analysis. The BigDAWG polystore seeks to provide a mechanism to allow applications to transparently achieve the benefits of diverse databases while insulating applications from the details of these databases. Associative arrays provide a common approach to the mathematics found in different databases: sets (SQL), graphs (NoSQL), and matrices (NewSQL). This work presents the SQL relational model in terms of associative arrays and identifies the key mathematical properties that are preserved within SQL. These properties include associativity, commutativity, distributivity, identities, annihilators, and inverses. Performance measurements on distributivity and associativity show the impact these properties can have on associative array operations. These results demonstrate that associative arrays could provide a mathematical model for polystores to optimize the exchange of data and execution queries.


翻译:SQL、 NoSQL、 NoSQL 和 NewSQL 数据库的成功反映了它们有能力为金融交易、互联网搜索和数据分析等特定领域提供重要的功能和性能效益。 BigDAWG 聚层试图提供一个机制,允许应用程序透明地实现不同数据库的惠益,同时从这些数据库的细节中隔绝应用程序。组合阵列为不同数据库中发现的数学提供了一种共同方法:数据集(SQL)、图表(NoSQL)和矩阵(NewSQL)。这项工作展示了SQL 关联阵列模型,并确定了在SQL内保存的关键数学属性。这些属性包括关联性、共通性、分散性、身份、聚合器和反向。关于分配和关联性的绩效测量显示这些属性对组合阵列操作可能产生的影响。这些结果表明,组合阵列可以为组合提供数学模型,以优化数据交换和执行查询。

0
下载
关闭预览

相关内容

NewSQL是一种新型的关系型数据库。在为OLTP提供像NoSQL那样的伸缩性的同时,提供传统数据库那样的事务ACID保证。
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
8+阅读 · 2019年5月20日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关VIP内容
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
73+阅读 · 2020年5月5日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Neural Response Generation with Meta-Words
Arxiv
6+阅读 · 2019年6月14日
Arxiv
8+阅读 · 2019年5月20日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
6+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年2月20日
Top
微信扫码咨询专知VIP会员