3D object detection task from lidar or camera sensors is essential for autonomous driving. Pioneer attempts at multi-modality fusion complement the sparse lidar point clouds with rich semantic texture information from images at the cost of extra network designs and overhead. In this work, we propose a novel semantic passing framework, named SPNet, to boost the performance of existing lidar-based 3D detection models with the guidance of rich context painting, with no extra computation cost during inference. Our key design is to first exploit the potential instructive semantic knowledge within the ground-truth labels by training a semantic-painted teacher model and then guide the pure-lidar network to learn the semantic-painted representation via knowledge passing modules at different granularities: class-wise passing, pixel-wise passing and instance-wise passing. Experimental results show that the proposed SPNet can seamlessly cooperate with most existing 3D detection frameworks with 1~5% AP gain and even achieve new state-of-the-art 3D detection performance on the KITTI test benchmark. Code is available at: https://github.com/jb892/SPNet.


翻译:3D 目标检测任务来自 Lidar 或相机传感器,对于自主驱动至关重要。 多式聚合的先锋尝试以以额外的网络设计和管理成本为代价,对稀疏的 Lidar点云云进行丰富的语义纹理信息补充。在这项工作中,我们提议了一个名为 SPNet 的新型语义通过框架,以丰富背景绘画为指导,提升现有基于Lidar 的3D 检测模型的性能,在推断过程中不产生额外的计算费用。我们的关键设计是首先通过培训一个语义涂鸦教师模型,利用地真伪标签中潜在的启发性语义学知识,然后指导纯lidar网络通过不同微粒体的知识传递模块学习语义-语义表达。 实验结果表明,拟议的SPNet能够与大多数现有的3D 检测框架进行无缝合作,获得1-5% AP 的收益,甚至实现KITTI 测试基准的新的状态- 3D 检测性能。 代码可查到: https:// SP/ lix2/ 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Semantic Novelty Detection via Relational Reasoning
Arxiv
0+阅读 · 2022年9月2日
Contrastive Semantic-Guided Image Smoothing Network
Arxiv
0+阅读 · 2022年9月2日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员