Autonomous fabric manipulation is a longstanding challenge in robotics, but evaluating progress is difficult due to the cost and diversity of robot hardware. Using Reach, a cloud robotics platform that enables low-latency remote execution of control policies on physical robots, we present the first systematic benchmarking of fabric manipulation algorithms on physical hardware. We develop 4 novel learning-based algorithms that model expert actions, keypoints, reward functions, and dynamic motions, and we compare these against 4 learning-free and inverse dynamics algorithms on the task of folding a crumpled T-shirt with a single robot arm. The entire lifecycle of data collection, model training, and policy evaluation is performed remotely without physical access to the robot workcell. Results suggest a new algorithm combining imitation learning with analytic methods achieves 84% of human-level performance on the folding task. See https://sites.google.com/berkeley.edu/cloudfolding for all data, code, models, and supplemental material.
翻译:自主结构操纵是机器人长期面临的一项挑战,但由于机器人硬件的成本和多样性,很难对进展进行评估。利用云型机器人平台 -- -- 云型机器人平台 -- -- 能够对物理机器人实施低纬度远程控制政策,我们展示了对物理机器人进行结构操纵算法的第一个系统性基准;我们开发了4种新型基于学习的算法,以模拟专家行动、关键点、奖赏功能和动态动作,并将这些算法与4种无学习和反动态算法进行比较,这些算法涉及将折叠的T恤衫与单一机器人臂折叠的任务。数据收集、模型培训和政策评价的整个生命周期都是在远程进行,没有实际进入机器人工作细胞。结果显示一种将模拟学习与分析方法相结合的新算法,在折叠任务中实现了人类水平绩效的84%。见https://sites.google.com/berkeley.edu/cloudfolding of frications of all data、代码、模型和补充材料。