Real world tournaments are almost always intransitive. Recent works have noted that parametric models which assume $d$ dimensional node representations can effectively model intransitive tournaments. However, nothing is known about the structure of the class of tournaments that arise out of any fixed $d$ dimensional representations. In this work, we develop a novel theory for understanding parametric tournament representations. Our first contribution is to structurally characterize the class of tournaments that arise out of $d$ dimensional representations. We do this by showing that these tournament classes have forbidden configurations which must necessarily be union of flip classes, a novel way to partition the set of all tournaments. We further characterise rank $2$ tournaments completely by showing that the associated forbidden flip class contains just $2$ tournaments. Specifically, we show that the rank $2$ tournaments are equivalent to locally-transitive tournaments. This insight allows us to show that the minimum feedback arc set problem on this tournament class can be solved using the standard Quicksort procedure. For a general rank $d$ tournament class, we show that the flip class associated with a coned-doubly regular tournament of size $\mathcal{O}(\sqrt{d})$ must be a forbidden configuration. To answer a dual question, using a celebrated result of \cite{forster}, we show a lower bound of $\mathcal{O}(\sqrt{n})$ on the minimum dimension needed to represent all tournaments on $n$ nodes. For any given tournament, we show a novel upper bound on the smallest representation dimension that depends on the least size of the number of unique nodes in any feedback arc set of the flip class associated with a tournament. We show how our results also shed light on upper bound of sign-rank of matrices.


翻译:真正的世界锦标赛几乎总是不透明。 最近的作品指出, 假定美元维维度节点代表的参数模型可以有效地模拟不透明的锦标赛。 但是, 对于任何固定美元维度代表的赛级结构, 我们并不知道任何固定的美元维度代表的赛级结构。 在这项工作中, 我们开发了一种新颖的理论, 以理解比标度代表的比标度。 我们的第一个贡献是, 从结构上描述由美元维度代表的赛级类别。 我们这样做的方式是显示, 这些赛级的禁止配置必须是翻转班的组合, 这必然是所有锦标赛的分级。 我们进一步指定, 通过显示相关的禁止翻转班仅包含2美元的赛级。 具体地说, 我们显示, 2 美元的赛级相当于当地透明的锦标度代表的比标值。 我们的平面代表的比标值必须显示一个最低值的比标值。

0
下载
关闭预览

相关内容

NeurIPS 20201接收论文列表发布,2334篇论文都在这了!
专知会员服务
37+阅读 · 2021年11月4日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
4+阅读 · 2020年11月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员