Reliable estimates of sea level return levels are crucial for coastal flooding risk assessments and for coastal flood defence design. We describe a novel method for estimating extreme sea levels that is the first to capture seasonality, interannual variations and longer term changes. We use a joint probabilities method, with skew surge and peak tide as two sea level components. The tidal regime is predictable but skew surges are stochastic. We present a statistical model for skew surges, where the main body of the distribution is modelled empirically whilst a non-stationary generalised Pareto distribution (GPD) is used for the upper tail. We capture within-year seasonality by introducing a daily covariate to the GPD model and allowing the distribution of peak tides to change over months and years. Skew surge-peak tide dependence is accounted for via a tidal covariate in the GPD model and we adjust for skew surge temporal dependence through the subasymptotic extremal index. We incorporate spatial prior information in our GPD model to reduce the uncertainty associated with the highest return level estimates. Our results are an improvement on current return level estimates, with previous methods typically underestimating. We illustrate our method at four UK tide gauges.
翻译:对海平面回归水平的可靠估计是沿海洪水风险评估和沿海防洪设计的关键。我们描述一种估计极端海平面的新方法,这是第一个捕捉季节性、年际变化和长期变化的新方法。我们使用一种联合概率方法,将潮汐涨潮和峰值涨潮作为海平面的两个组成部分。潮汐制度是可以预测的,但潮汐涨幅是随机的。我们为潮湿潮潮流提供了一个统计模型,主要分布体是模拟实验性的,而上尾巴则使用非静止的泛泛太平洋分布(GPD)模型。我们通过对GPD模型采用每日通变换,使高峰潮的分布能够在数月和数年内发生变化,来捕捉一年之内的季节性。Skew峰值涨潮依赖性通过GPD模型的潮流共变,我们通过亚麻药极端指数来调整Skew的季节性激增时间依赖性依赖性。我们把空间前信息纳入我们的GDD模型,以减少与最高回报水平估计数相关的不确定性。我们的成果是用目前回归水平的典型测量方法改进了我们的数据。