This registered report introduces the largest, and for the first time, reproducible experimental survey on biomedical sentence similarity with the following aims: (1) to elucidate the state of the art of the problem; (2) to solve some reproducibility problems preventing the evaluation of most of current methods; (3) to evaluate several unexplored sentence similarity methods; (4) to evaluate an unexplored benchmark, called Corpus-Transcriptional-Regulation; (5) to carry out a study on the impact of the pre-processing stages and Named Entity Recognition (NER) tools on the performance of the sentence similarity methods; and finally, (6) to bridge the lack of reproducibility resources for methods and experiments in this line of research. Our experimental survey is based on a single software platform that is provided with a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments. In addition, we introduce a new aggregated string-based sentence similarity method, called LiBlock, together with eight variants of current ontology-based methods and a new pre-trained word embedding model trained on the full-text articles in the PMC-BioC corpus. Our experiments show that our novel string-based measure sets the new state of the art on the sentence similarity task in the biomedical domain and significantly outperforms all the methods evaluated herein, except one ontology-based method. Likewise, our experiments confirm that the pre-processing stages, and the choice of the NER tool, have a significant impact on the performance of the sentence similarity methods. We also detail some drawbacks and limitations of current methods, and warn on the need of refining the current benchmarks. Finally, a noticeable finding is that our new string-based method significantly outperforms all state-of-the-art Machine Learning models evaluated herein.


翻译:这份已登记的报告首次介绍了最大的生物医学判决相似性实验性调查,其目标如下:(1) 阐明问题的最新状态;(2) 解决某些阻碍评估目前方法中大多数方法的再生问题;(3) 评估几项尚未探讨的判决相似性方法;(4) 评价一个未探讨的基准,称为Corpus-Transital- Control;(5) 研究预处理阶段和命名实体识别工具对判决相似性绩效的影响;以及最后,(6) 弥补这方面研究中缺乏方法和实验的再生资源的问题;(2) 解决一些妨碍评价目前方法中大多数方法的再生问题;(3) 评估几个未经探讨的类似判决方法;(4) 评估一个未经探讨的基准,称为Corpus-Trancripal-Proformation;(5) 研究前处理阶段和命名实体识别工具(NER)对判决相似性的影响;以及最后,(6) 弥补这方面研究中的方法和实验中经培训的完整版本的再生资源资源的缺乏。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月6日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
15+阅读 · 2021年7月14日
Arxiv
11+阅读 · 2019年6月19日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员