During the COVID-19 pandemic, social media platforms were ideal for communicating due to social isolation and quarantine. Also, it was the primary source of misinformation dissemination on a large scale, referred to as the infodemic. Therefore, automatic debunking misinformation is a crucial problem. To tackle this problem, we present two COVID-19 related misinformation datasets on Twitter and propose a misinformation detection system comprising network-based and content-based processes based on machine learning algorithms and NLP techniques. In the network-based process, we focus on social properties, network characteristics, and users. On the other hand, we classify misinformation using the content of the tweets directly in the content-based process, which contains text classification models (paragraph-level and sentence-level) and similarity models. The evaluation results on the network-based process show the best results for the artificial neural network model with an F1 score of 88.68%. In the content-based process, our novel similarity models, which obtained an F1 score of 90.26%, show an improvement in the misinformation classification results compared to the network-based models. In addition, in the text classification models, the best result was achieved using the stacking ensemble-learning model by obtaining an F1 score of 95.18%. Furthermore, we test our content-based models on the Constraint@AAAI2021 dataset, and by getting an F1 score of 94.38%, we improve the baseline results. Finally, we develop a fact-checking website called Checkovid that uses each process to detect misinformative and informative claims in the domain of COVID-19 from different perspectives.


翻译:在COVID-19大流行期间,社交媒体平台由于社会隔离和隔离而成为沟通的理想平台。它也是大规模传播错误信息的主要来源,称为Infomic。因此,自动消除错误信息是一个关键问题。为了解决这个问题,我们在Twitter上提供了两个与COVID-19有关的错误数据套件,并提议了一个错误检测系统,其中包括基于网络和内容的基于机器学习算法和NLP技术的程序。在基于网络的进程中,我们侧重于社会属性、网络特性和用户。另一方面,我们利用基于内容的流程直接对错误信息进行分类,其中含有文本分类模型(等级和句级)和类似模型。为了解决这一问题,我们在Twitter上提供了两个基于COVI-19-19的错误数据套件。我们在基于内容的流程中,根据基于网络的F1学习算法和NLP技术,我们获得了90-26%的F1标准评分,显示与基于网络模型的错误信息分类结果的改进。此外,在基于内容的DLIA中,我们利用基于文件的排序的排序模型,我们从FLA中获取了最佳结果。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
6+阅读 · 2018年1月14日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员