Scaling limits for the weakly driven Zhang and the Bak-Tang-Wiesenfeld (BTW) model for self-organized criticality are considered. It is shown that the weakly driven Zhang model converges to a stochastic PDE with singular-degenerate diffusion. In addition, the deterministic BTW model is proved to converge to a singular-degenerate PDE. Alternatively, the proof of convergence can be understood as a proof of convergence of a finite-difference discretization for singular-degenerate stochastic PDE. This extends recent work on finite difference approximation of (deterministic) quasilinear diffusion equations to discontinuous diffusion coefficients and stochastic PDE.
翻译:张氏驱动力弱的张氏和Bak-Tang-Wiesenfeld(BTW)自我组织临界度模型的缩放限制被考虑进去。 事实证明, 驱动力弱的张氏模型与具有单离子扩散的随机式 PDE 相融合。 此外, 确定性BTW 模型被证明与单离散式 PDE 相融合。 或者, 趋同的证据可以被理解为单离散式单离散式 PDE 的有限异化的证据。 这延续了最近关于( 确定性) 准线扩散方程式的有限差近似值, 直至不连续的传播系数和随机式 PDE 。