The Maximum Mean Discrepancy (MMD) is a widely used multivariate distance metric for two-sample testing. The standard MMD test statistic has an intractable null distribution typically requiring costly resampling or permutation approaches for calibration. In this work we leverage a martingale interpretation of the estimated squared MMD to propose martingale MMD (mMMD), a quadratic-time statistic which has a limiting standard Gaussian distribution under the null. Moreover we show that the test is consistent against any fixed alternative and for large sample sizes, mMMD offers substantial computational savings over the standard MMD test, with only a minor loss in power.


翻译:最大均值差异(MMD)是一种广泛用于双样本检验的多元距离度量。标准MMD检验统计量的零分布难以解析处理,通常需要昂贵的重采样或置换方法进行校准。本研究利用平方MMD估计量的鞅解释,提出鞅MMD(mMMD)——一种具有二次时间复杂度的统计量,其在零假设下具有渐近标准高斯分布。此外,我们证明该检验对任意固定备择假设具有一致性,并且在大样本量下,mMMD在仅损失少量检验功效的同时,相比标准MMD检验能显著节省计算成本。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
15+阅读 · 2019年11月26日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
15+阅读 · 2019年11月26日
Arxiv
12+阅读 · 2019年2月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员