Understanding the dynamics of financial transactions among people is critically important for various applications such as fraud detection. One important aspect of financial transaction networks is temporality. The order and repetition of transactions can offer new insights when considered within the graph structure. Temporal motifs, defined as a set of nodes that interact with each other in a short time period, are a promising tool in this context. In this work, we study three unique temporal financial networks: transactions in Mercari, an online marketplace, payments in a synthetic network generated by J.P. Morgan Chase, and payments and friendships among Venmo users. We consider the fraud detection problem on the Mercari and J.P. Morgan Chase networks, for which the ground truth is available. We show that temporal motifs offer superior performance than a previous method that considers simple graph features. For the Venmo network, we investigate the interplay between financial and social relations on three tasks: friendship prediction, vendor identification, and analysis of temporal cycles. For friendship prediction, temporal motifs yield better results than general heuristics, such as Jaccard and Adamic-Adar measures. We are also able to identify vendors with high accuracy and observe interesting patterns in rare motifs, like temporal cycles. We believe that the analysis, datasets, and lessons from this work will be beneficial for future research on financial transaction networks.
翻译:理解人们之间金融交易的动态对于欺诈检测等各种应用至关重要。金融交易网络的一个重要方面是时间性。交易的顺序和重复可以提供新的洞察力,如果在图表结构内考虑的话。Temalalmotifs被定义为在短时间内相互作用的一组节点,是这方面一个很有希望的工具。在这项工作中,我们研究了三种独特的时间性金融网络:在Mercari(在线市场)、J.P.摩根大通公司产生的合成网络中的交易、在J.P.摩根大通公司产生的合成网络中付款,以及Venmo用户之间的付款和友谊。我们考虑了Mercari和J.P.摩根大通公司网络中的欺诈检测问题,这些网络有地面真相可查。我们显示,时间性模型比以前考虑简单图表特征的方法提供了优异的性。我们研究了Venmoo网络在三个任务上金融和社会关系之间的相互作用:友谊预测、供应商身份确定以及时间周期分析。关于友谊的预测,时间性模型比一般的神学结果,例如Jacard和Adam-Adar措施。我们还可以从高时空数据周期中找出有价值的数据分析。我们相信,这种交易的周期中可以相信这种分析。