Background: Measurement errors in terms of quantification or classification frequently occur in epidemiologic data and can strongly impact inference. Measurement errors may occur when ascertaining, recording or extracting data. Although the effects of measurement errors can be severe and are well described, simple straight forward general analytic solutions are not readily available for statistical analysis and measurement error is frequently not acknowledged or accounted for. Generally, to account for measurement error requires some data where we can observe the variables once with and once without error, to establish the relationship between the two. Methods: Here we describe a general method accounting for measurement error in outcome and/or predictor variables for the parametric regression setting when there is a validation subsample where variables are measured once with and once without error. The method does not describe and thus does not depend on the particular relation between the variables measured with and without error, and is generally robust to the type of measurement error, for example nondifferential, differential or Berkson errors. Results: Simulation studies show how the method reduces bias compared to models based upon variables measured with error alone and reduces variances compared to models based upon the variables measured without error in the validation subsample alone. Conclusion: The proposed estimator has favorable properties in terms of bias and variance, is easily derived empirically, and is robust to different types of measurement error. This method should be a valuable tool in the analysis of data with measurement error.


翻译:背景:量化或分类方面的计量误差经常发生在流行病学数据中,并可能强烈影响推算。测量误差可能发生于确定、记录或提取数据时。虽然测量误差的影响可能很严重,而且描述得非常清楚,但统计分析往往不易获得简单的直向前方一般分析解决办法,衡量误差往往得不到承认或核算。一般而言,为了计算误差,为了计算误差,我们需要一些数据,以便一、一、一、一、二、二、二、二、二、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、四、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、三、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、四、

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年10月11日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
13+阅读 · 2019年4月17日
Arxiv
0+阅读 · 2021年12月15日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
VIP会员
相关资讯
已删除
将门创投
13+阅读 · 2019年4月17日
Top
微信扫码咨询专知VIP会员