3D face reconstruction from a single image is challenging due to its ill-posed nature. Model-based face autoencoders address this issue effectively by fitting a face model to the target image in a weakly supervised manner. However, in unconstrained environments occlusions distort the face reconstruction because the model often erroneously tries to adapt to occluded face regions. Supervised occlusion segmentation is a viable solution to avoid the fitting of occluded face regions, but it requires a large amount of annotated training data. In this work, we enable model-based face autoencoders to segment occluders accurately without requiring any additional supervision during training, and this separates regions where the model will be fitted from those where it will not be fitted. To achieve this, we extend face autoencoders with a segmentation network. The segmentation network decides which regions the model should adapt to by reaching balances in a trade-off between including pixels and adapting the model to them, and excluding pixels so that the model fitting is not negatively affected and reaches higher overall reconstruction accuracy on pixels showing the face. This leads to a synergistic effect, in which the occlusion segmentation guides the training of the face autoencoder to constrain the fitting in the non-occluded regions, while the improved fitting enables the segmentation model to better predict the occluded face regions. Qualitative and quantitative experiments on the CelebA-HQ database and the AR database verify the effectiveness of our model in improving 3D face reconstruction under occlusions and in enabling accurate occlusion segmentation from weak supervision only. Code available at https://github.com/unibas-gravis/Occlusion-Robust-MoFA.


翻译:3D 以单一图像进行面部重建具有挑战性, 原因是它的性质不好。 基于模型的面部自动校正器能够有效地解决这个问题, 使面部模版与目标图像相匹配, 且无需经过严格监督。 然而, 在不受控制的环境中, 面部改造会扭曲面部重建, 因为模型常常被错误地试图适应隐蔽的面部区域。 监督的闭路分解是一个可行的解决方案, 以避免隐蔽的面部区域的安装, 但是它需要大量有注释的培训数据 。 在这项工作中, 我们使基于模型的面部自动校正数能够精确到分解部分的部位, 而无需在培训期间做任何额外的核查。 为了达到这个目的, 我们的面部位将面对自动校正, 分解网络决定了模型应该适应哪些区域, 在包括像素模型和调整模型的面部之间实现平衡, 排除了像素, 以便模型的装配制不会对面部的面部位进行负面的影响, 并且更精确地对Qelels- 进行整个重建监督 。 。 在升级的部部分中, 改进了节面部校正的校正的校正的校正的校正的校正, 将产生一个协同效果, 。

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
专知会员服务
50+阅读 · 2020年11月17日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
三维重建 3D reconstruction 有哪些实用算法?
极市平台
12+阅读 · 2020年2月23日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
教程 | 如何从TensorFlow转入PyTorch
机器之心
7+阅读 · 2017年9月30日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
Arxiv
5+阅读 · 2018年12月18日
Arxiv
6+阅读 · 2018年6月21日
Arxiv
5+阅读 · 2018年1月17日
VIP会员
相关资讯
三维重建 3D reconstruction 有哪些实用算法?
极市平台
12+阅读 · 2020年2月23日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
教程 | 如何从TensorFlow转入PyTorch
机器之心
7+阅读 · 2017年9月30日
Top
微信扫码咨询专知VIP会员