How to achieve the tradeoff between privacy and utility is one of fundamental problems in private data analysis.In this paper, we give a rigourous differential privacy analysis of networks in the appearance of covariates via a generalized $\beta$-model, which has an $n$-dimensional degree parameter $\beta$ and a $p$-dimensional homophily parameter $\gamma$.Under $(k_n, \epsilon_n)$-edge differential privacy, we use the popular Laplace mechanism to release the network statistics.The method of moments is used to estimate the unknown model parameters. We establish the conditions guaranteeing consistency of the differentially private estimators $\widehat{\beta}$ and $\widehat{\gamma}$ as the number of nodes $n$ goes to infinity, which reveal an interesting tradeoff between a privacy parameter and model parameters. The consistency is shown by applying a two-stage Newton's method to obtain the upper bound of the error between $(\widehat{\beta},\widehat{\gamma})$ and its true value $(\beta, \gamma)$ in terms of the $\ell_\infty$ distance, which has a convergence rate of rough order $1/n^{1/2}$ for $\widehat{\beta}$ and $1/n$ for $\widehat{\gamma}$, respectively. Further, we derive the asymptotic normalities of $\widehat{\beta}$ and $\widehat{\gamma}$, whose asymptotic variances are the same as those of the non-private estimators under some conditions. Our paper sheds light on how to explore asymptotic theory under differential privacy in a principled manner; these principled methods should be applicable to a class of network models with covariates beyond the generalized $\beta$-model. Numerical studies and a real data analysis demonstrate our theoretical findings.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
24+阅读 · 2020年9月25日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
140+阅读 · 2019年9月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月5日
VIP会员
相关资讯
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员