In the field of dentistry, there is a growing demand for increased precision in diagnostic tools, with a specific focus on advanced imaging techniques such as computed tomography, cone beam computed tomography, magnetic resonance imaging, ultrasound, and traditional intra-oral periapical X-rays. Deep learning has emerged as a pivotal tool in this context, enabling the implementation of automated segmentation techniques crucial for extracting essential diagnostic data. This integration of cutting-edge technology addresses the urgent need for effective management of dental conditions, which, if left undetected, can have a significant impact on human health. The impressive track record of deep learning across various domains, including dentistry, underscores its potential to revolutionize early detection and treatment of oral health issues. Objective: Having demonstrated significant results in diagnosis and prediction, deep convolutional neural networks (CNNs) represent an emerging field of multidisciplinary research. The goals of this study were to provide a concise overview of the state of the art, standardize the current debate, and establish baselines for future research. Method: In this study, a systematic literature review is employed as a methodology to identify and select relevant studies that specifically investigate the deep learning technique for dental imaging analysis. This study elucidates the methodological approach, including the systematic collection of data, statistical analysis, and subsequent dissemination of outcomes. Conclusion: This work demonstrates how Convolutional Neural Networks (CNNs) can be employed to analyze images, serving as effective tools for detecting dental pathologies. Although this research acknowledged some limitations, CNNs utilized for segmenting and categorizing teeth exhibited their highest level of performance overall.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员