The progress of some AI paradigms such as deep learning is said to be linked to an exponential growth in the number of parameters. There are many studies corroborating these trends, but does this translate into an exponential increase in energy consumption? In order to answer this question we focus on inference costs rather than training costs, as the former account for most of the computing effort, solely because of the multiplicative factors. Also, apart from algorithmic innovations, we account for more specific and powerful hardware (leading to higher FLOPS) that is usually accompanied with important energy efficiency optimisations. We also move the focus from the first implementation of a breakthrough paper towards the consolidated version of the techniques one or two year later. Under this distinctive and comprehensive perspective, we study relevant models in the areas of computer vision and natural language processing: for a sustained increase in performance we see a much softer growth in energy consumption than previously anticipated. The only caveat is, yet again, the multiplicative factor, as future AI increases penetration and becomes more pervasive.


翻译:深层次学习等一些AI模式的进展据说与参数数量的指数增长有关。有许多研究证实了这些趋势,但这是否转化为能源消耗的指数增长?为了回答这个问题,我们把重点放在推论成本而不是培训成本上,因为前者只是由于多种复制因素而占了计算努力的大部分。此外,除了算法创新之外,我们还考虑到更具体和强大的硬件(导致更高的FLOPS),通常伴随着重要的能源效率优化。我们还把重点从首次执行突破性文件转向一年或两年后技术的综合版本。根据这一独特和全面的观点,我们研究计算机愿景和自然语言处理领域的相关模型:为了持续提高绩效,我们看到能源消费的增长比先前预期的要慢得多。唯一的告诫是,随着未来的AI增加渗透性并变得更加普遍,多复制性因素再次成为了。

1
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
9+阅读 · 2021年10月5日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
3+阅读 · 2018年12月17日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
9+阅读 · 2021年10月5日
Arxiv
5+阅读 · 2021年4月21日
Arxiv
11+阅读 · 2021年3月25日
Arxiv
3+阅读 · 2018年12月17日
Top
微信扫码咨询专知VIP会员