We study how large an $\ell^2$ ellipsoid is by introducing type-$\tau$ integrals that capture the average decay of its semi-axes. These integrals turn out to be closely related to standard complexity measures: we show that the metric entropy of the ellipsoid is asymptotically equivalent to the type-1 integral, and that the minimax risk in non-parametric estimation is asymptotically determined by the type-2 and type-3 integrals. This allows us to retrieve and sharpen classical results about metric entropy and minimax risk of ellipsoids through a systematic analysis of the type-$\tau$ integrals, and yields an explicit formula linking the two. As an application, we improve on the best-known characterization of the metric entropy of the Sobolev ellipsoid, and extend Pinsker's Sobolev theorem in two ways: (i) to any bounded open domain in arbitrary finite dimension, and (ii) by providing the second-order term in the asymptotic expansion of the minimax risk.
翻译:我们通过引入类型-τ积分来研究ℓ²椭球的大小,这些积分捕捉了其半轴平均衰减的特性。这些积分与标准复杂度度量密切相关:我们证明椭球的度量熵渐近等价于类型-1积分,而非参数估计中的极小极大风险由类型-2和类型-3积分渐近决定。通过对类型-τ积分的系统分析,我们得以恢复并锐化关于椭球度量熵与极小极大风险的经典结果,并得到连接二者的显式公式。作为应用,我们改进了Sobolev椭球度量熵的最佳已知刻画,并从两个方面推广了Pinsker的Sobolev定理:(i) 推广至任意有限维有界开域,(ii) 给出极小极大风险渐近展开中的二阶项。