Digital transformation forces companies to rethink their processes to meet current customer needs. Business Process Management (BPM) can provide the means to structure and tackle this change. However, most approaches to BPM face restrictions on the number of processes they can optimize at a time due to complexity and resource restrictions. Investigating this shortcoming, the concept of the long tail of business processes suggests a hybrid approach that entails managing important processes centrally, while incrementally improving the majority of processes at their place of execution. This study scrutinizes this observation as well as corresponding implications. First, we define a system of indicators to automatically prioritize processes based on execution data. Second, we use process mining to analyze processes from multiple companies to investigate the distribution of process value in terms of their process variants. Third, we examine the characteristics of the process variants contained in the short head and the long tail to derive and justify recommendations for their management. Our results suggest that the assumption of a long-tailed distribution holds across companies and indicators and also applies to the overall improvement potential of processes and their variants. Across all cases, process variants in the long tail were characterized by fewer customer contacts, lower execution frequencies, and a larger number of involved stakeholders, making them suitable candidates for distributed improvement.


翻译:企业流程管理(BPM)可以提供构建和应对这一变化的手段。然而,由于复杂和资源限制,对企业流程的大多数做法都面临对流程数量的限制。调查这一缺陷,业务流程长期尾端的概念意味着一种混合方法,它需要集中管理重要流程,同时逐步改进执行地点的大多数流程。本研究仔细检查了这一观察以及相应的影响。首先,我们界定了一个指标系统,根据执行数据自动确定流程的优先次序。第二,我们利用流程采矿分析多个公司的程序,以调查流程变异性为流程价值的分配情况。第三,我们审查短头和长尾的流程变异的特点,以提出并论证对其管理的建议。我们的结果表明,长期扩展的流程分布在公司和指标之间,也适用于流程及其变异性的总体改进潜力。在所有案例中,长尾的流程变异性特征是客户接触减少,执行频率降低,所涉利益攸关方增加,适当候选人增加。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员