Online retail is a visual experience- Shoppers often use images as first order information to decide if an item matches their personal style. Image characteristics such as color, simplicity, scene composition, texture, style, aesthetics and overall quality play a crucial role in making a purchase decision, clicking on or liking a product listing. In this paper we use a set of image features that indicate quality to predict product listing popularity on a major e-commerce website, Etsy. We first define listing popularity through search clicks, favoriting and purchase activity. Next, we infer listing quality from the pixel-level information of listed images as quality features. We then compare our findings to text-only models for popularity prediction. Our initial results indicate that a combined image and text modeling of product listings outperforms text-only models in popularity prediction.
翻译:在线零售是一种视觉经验—— 购物者经常将图像作为决定某一物品是否符合其个人风格的首要信息。 图像特征, 如颜色、 简单、 场景构成、 纹理、 风格、 审美和总体质量等, 在做出购买决定、 点击或喜欢产品列表方面起着关键作用 。 在本文中, 我们使用一套显示质量的图像特征来预测在主要电子商务网站Etsy上显示受欢迎程度的产品。 我们首先通过搜索点击、 偏好 和 购买活动 来定义受欢迎程度列表 。 其次, 我们从列表图像的像素级信息中推断出质量为质量特征 。 我们然后将我们的调查结果与只用文本来预测受欢迎程度的模型进行比较。 我们的初步结果显示, 综合的图像和文本模型显示, 列出超出受欢迎预测中只使用文本的模型 。