Trait measurement is critical for the plant breeding and agricultural production pipeline. Typically, a suite of plant traits is measured using laborious manual measurements and then used to train and/or validate higher throughput trait estimation techniques. Here, we introduce a relatively simple convolutional neural network (CNN) model that accepts multiple sensor inputs and predicts multiple continuous trait outputs - i.e. a multi-input, multi-output CNN (MIMO-CNN). Further, we introduce deformable convolutional layers into this network architecture (MIMO-DCNN) to enable the model to adaptively adjust its receptive field, model complex variable geometric transformations in the data, and fine-tune the continuous trait outputs. We examine how the MIMO-CNN and MIMO-DCNN models perform on a multi-input (i.e. RGB and depth images), multi-trait output lettuce dataset from the 2021 Autonomous Greenhouse Challenge. Ablation studies were conducted to examine the effect of using single versus multiple inputs, and single versus multiple outputs. The MIMO-DCNN model resulted in a normalized mean squared error (NMSE) of 0.068 - a substantial improvement over the top 2021 leaderboard score of 0.081. Open-source code is provided.
翻译:对植物育种和农业生产管道而言,测量是关键。一般情况下,用人工人工测量测量测量一组植物特征,然后用来培训和/或验证较高的吞吐量估计技术。在这里,我们引入了一个相对简单的进化神经网络模型,接受多个传感器输入,并预测多重连续特性输出,即多输入、多输出CNN(MIMO-CNN),此外,我们在这个网络结构(MIMO-DCNN)中引入了可变共变层(MIMO-DCNN),以使模型能够适应性地调整其容留场、数据中模型复杂的变异几何质转换和微调连续特性输出。我们研究了IMIMO-CNN和MIMO-DCNN模型如何在多输入(即RGB和深度图像)中实现多重连续特性输出。此外,我们进行了各种模拟研究,以研究使用单一和多种输入以及单一和多个输出的结果。MIMO-DCNNN模型在20年的平方位标准上导致了200.0的正位平均方向错误。我们考察了MUSO-80的开源代码。