Measuring event salience is essential in the understanding of stories. This paper takes a recent unsupervised method for salience detection derived from Barthes Cardinal Functions and theories of surprise and applies it to longer narrative forms. We improve the standard transformer language model by incorporating an external knowledgebase (derived from Retrieval Augmented Generation) and adding a memory mechanism to enhance performance on longer works. We use a novel approach to derive salience annotation using chapter-aligned summaries from the Shmoop corpus for classic literary works. Our evaluation against this data demonstrates that our salience detection model improves performance over and above a non-knowledgebase and memory augmented language model, both of which are crucial to this improvement.
翻译:测量事件显著性对于了解故事至关重要。 本文件采用了一种不受监督的最近从Barthes 红衣主教函数和突袭理论中发现显著性能的方法,并将其应用于较长的叙事形式。我们改进了标准变压器语言模型,纳入了外部知识库(来源于回溯式增殖一代),并增加了一个记忆机制,以提高长期工程的绩效。我们采用了一种新颖的方法,利用经典文学作品Shmoopample的与章节一致的摘要来得出突出的注释。我们对这些数据的评估表明,我们的突出性能检测模型在非知识库和记忆增强语言模型之外提高了性能,而这两种模型对于这一改进都至关重要。