Discrete Flow-based Models (DFMs) are powerful generative models for high-quality discrete data but typically suffer from slow sampling speeds due to their reliance on iterative decoding processes. This reliance on a multi-step process originates from the factorization approximation of DFMs, which is necessary for handling high-dimensional data. In this paper, we analyze the factorization approximation error using Conditional Total Correlation (TC), and reveal its dependence on the coupling. To address the challenge of efficient few-step generation, we propose Rectified Discrete Flow (ReDi), a novel iterative method that reduces the underlying factorization error (measured as Conditional TC) by rectifying the coupling between source and target distributions. We theoretically prove that each ReDi step guarantees a monotonic decreasing Conditional TC, ensuring its convergence. Empirically, ReDi significantly reduces Conditional TC and enables few-step generation. Moreover, we demonstrate that the rectified couplings are well-suited for training efficient one-step models on image generation. ReDi offers a simple and theoretically grounded approach for tackling the few-step challenge, providing a new perspective on efficient discrete data synthesis. Code is available at https://github.com/Ugness/ReDi_discrete.


翻译:基于离散流的模型(DFMs)是生成高质量离散数据的强大生成模型,但由于依赖迭代解码过程,通常采样速度较慢。这种多步骤过程的依赖源于DFMs的因式分解近似,这对于处理高维数据是必要的。本文利用条件总相关性(TC)分析了因式分解近似误差,并揭示了其对耦合关系的依赖性。为解决高效少步生成的挑战,我们提出了修正离散流(ReDi),这是一种新颖的迭代方法,通过修正源分布与目标分布之间的耦合来减少基础因式分解误差(以条件TC度量)。我们从理论上证明了每一步ReDi都能保证条件TC单调递减,从而确保其收敛性。实验表明,ReDi显著降低了条件TC,并实现了少步生成。此外,我们证明了修正后的耦合非常适合训练高效的一步式图像生成模型。ReDi为解决少步生成挑战提供了一种简单且理论依据充分的方法,为高效离散数据合成提供了新的视角。代码可在 https://github.com/Ugness/ReDi_discrete 获取。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
24+阅读 · 2024年2月23日
Arxiv
26+阅读 · 2024年2月9日
Arxiv
15+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
24+阅读 · 2024年2月23日
Arxiv
26+阅读 · 2024年2月9日
Arxiv
15+阅读 · 2020年2月6日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员