The machine learning publication process is broken, of that there can be no doubt. Many of these flaws are attributed to the current workflow: LaTeX to PDF to reviewers to camera ready PDF. This has understandably resulted in the desire for new forms of publications; ones that can increase inclusively, accessibility and pedagogical strength. However, this venture fails to address the origins of these inadequacies in the contemporary paper workflow. The paper, being the basic unit of academic research, is merely how problems in the publication and research ecosystem manifest; but is not itself responsible for them. Not only will simply replacing or augmenting papers with different formats not fix existing problems; when used as a band-aid without systemic changes, will likely exacerbate the existing inequities. In this work, we argue that the root cause of hindrances in the accessibility of machine learning research lies not in the paper workflow but within the misaligned incentives behind the publishing and research processes. We discuss these problems and argue that the paper is the optimal workflow. We also highlight some potential solutions for the incentivization problems.


翻译:机器学习出版过程被打破,毫无疑问,毫无疑问,许多缺陷都归咎于目前的工作流程:将PDF的LaTeX交给PDF,让审查者对PDF进行简易的PDF进行摄像。这可以理解地导致对新形式出版物的渴望;这些出版物能够增加包容性、无障碍性和教学力量。然而,这一努力未能解决当代纸质工作流程中这些缺陷的根源。作为学术研究的基本单位的论文只是出版物和研究生态系统中的问题如何显现出来,而其本身却不对此负责。不仅只是用不同格式取代或增加论文,而不是解决现有的问题;当作为无系统改变的带状辅助工具使用时,可能会加剧现有的不公平现象。在这项工作中,我们认为,阻碍机器学习研究机会的障碍的根源不在于纸质工作流程,而在于出版和研究过程背后的不一致的激励因素。我们讨论了这些问题,认为文件是最佳的工作流程。我们还强调了某些潜在的激励问题解决方案。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
人工智能顶会WSDM2021优秀论文奖(Best Paper Award Runner-Up)出炉
专知会员服务
113+阅读 · 2020年10月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
AAAI 2019 录用列表论文公布,清华58篇
专知
31+阅读 · 2019年1月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
0+阅读 · 2021年6月9日
Arxiv
10+阅读 · 2020年11月26日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
人工智能顶会WSDM2021优秀论文奖(Best Paper Award Runner-Up)出炉
专知会员服务
113+阅读 · 2020年10月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
AAAI 2019 录用列表论文公布,清华58篇
专知
31+阅读 · 2019年1月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员