In order to deliver effective care, health management must consider the distinctive trajectories of chronic diseases. These diseases recurrently undergo acute, unstable, and stable phases, each of which requires a different treatment regimen. However, the correct identification of trajectory phases, and thus treatment regimens, is challenging. In this paper, we propose a data-driven, dynamic approach for identifying trajectory phases of chronic diseases and thus suggesting treatment regimens. Specifically, we develop a novel variable-duration copula hidden Markov model (VDC-HMMX). In our VDC-HMMX, the trajectory is modeled as a series of latent states with acute, stable, and unstable phases, which are eventually recovered. We demonstrate the effectiveness of our VDC-HMMX model on the basis of a longitudinal study with 928 patients suffering from low back pain. A myopic classifier identifies correct treatment regimens with a balanced accuracy of slightly above 70%. In comparison, our VDC-HMMX model is correct with a balanced accuracy of 83.65%. This thus highlights the value of longitudinal monitoring for chronic disease management.
翻译:为了提供有效的护理,健康管理必须考虑慢性病的独特轨迹。这些疾病经常经历急性、不稳定和稳定的阶段,其中每个阶段都需要不同的治疗疗法。然而,正确确定轨道阶段,从而确定治疗疗法,具有挑战性。在本文件中,我们建议采用以数据为驱动的动态方法,确定慢性病的轨道阶段,从而提出治疗方案。具体地说,我们开发了一个新型的可变隐藏的混血隐藏Markov模型(VDC-HMMX)。在我们的VDC-HMMX中,该轨迹以一系列具有急性、稳定、不稳定阶段的潜伏状态为模型,最终可以恢复。我们根据对928名患有低背痛的病人进行的纵向研究,展示了我们VDC-HMMX模型的有效性。一个近视分类器确定了正确的治疗方案,其准确性略高于70%。相比之下,我们的VDC-HMMX模型是正确的,准确度为83.65%。这突出表明了慢性病管理的纵向监测的价值。