We study kernel quadrature rules with convex weights. Our approach combines the spectral properties of the kernel with recombination results about point measures. This results in effective algorithms that construct convex quadrature rules using only access to i.i.d. samples from the underlying measure and evaluation of the kernel and that result in a small worst-case error. In addition to our theoretical results and the benefits resulting from convex weights, our experiments indicate that this construction can compete with the optimal bounds in well-known examples.
翻译:我们用锥形重量研究内核二次曲线规则。 我们的方法是将内核的光谱特性与点测量的再组合结果结合起来。 这导致了有效的算法,这种算法构建了锥形二次曲线规则,仅使用i.d. 内核基本测量和评估的样本,并导致一个小的最严重的错误。 除了我们的理论结果和从锥体重量产生的效益外,我们的实验还表明,这种构造可以与众所周知的例子中的最佳界限相竞争。