The year of 2020 has witnessed the unprecedented development of 5G networks, along with the widespread deployment of 5G base stations (BSs). Nevertheless, the enormous energy consumption of BSs and the incurred huge energy cost have become significant concerns for the mobile operators. As the continuous decline of the renewable energy cost, equipping the power-hungry BSs with renewable energy generators could be a sustainable solution. In this work, we propose an energy storage aided reconfigurable renewable energy supply solution for the BS, which could supply clean energy to the BS and store surplus energy for backup usage. Specifically, to flexibly reconfigure the battery's discharging/charging operations, we propose a deep reinforcement learning based reconfiguring policy, which can adapt to the dynamical renewable energy generations as well as the varying power demands. Our experiments using the real-world data on renewable energy generations and power demands demonstrate that, our reconfigurable power supply solution can achieve an energy saving ratio of 74.8%, compared to the case with traditional power grid supply.


翻译:2020年,随着5G基站的广泛部署,5G网络史无前例地发展了史无前例的5G网络。然而,BS的巨大能源消耗和巨大的能源成本已成为移动运营商的重大关切。可再生能源成本持续下降,用可再生能源发电机装备缺乏电力的BS系统可以成为可持续的解决办法。在这项工作中,我们提议为BS提供能源储存支持的可重新配置可再生能源供应解决方案,为BS提供清洁能源,并储存剩余能源供备用使用。具体地说,为了灵活调整电池的放电/装机操作,我们提议了一项基于深度强化学习的重组政策,该政策可以适应充满活力的可再生能源世代以及不同的电力需求。我们利用关于可再生能源世代和电力需求的现实数据进行的实验表明,与传统电网供应相比,我们可重新配置的电力供应解决方案可以达到74.8%的节能率。

1
下载
关闭预览

相关内容

深度强化学习 (DRL) 是一种使用深度学习技术扩展传统强化学习方法的一种机器学习方法。 传统强化学习方法的主要任务是使得主体根据从环境中获得的奖赏能够学习到最大化奖赏的行为。然而,传统无模型强化学习方法需要使用函数逼近技术使得主体能够学习出值函数或者策略。在这种情况下,深度学习强大的函数逼近能力自然成为了替代人工指定特征的最好手段并为性能更好的端到端学习的实现提供了可能。
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月12日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
人工智能 | ICAPS 2019等国际会议信息3条
Call4Papers
3+阅读 · 2018年9月28日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Deep Reinforcement Learning 深度增强学习资源
数据挖掘入门与实战
7+阅读 · 2017年11月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员