This paper focuses on the analytical probabilistic modeling of vehicular traffic. It formulates a node model. It then formulates a network model by coupling the node model with the link model of Lu and Osorio (2018), which is a stochastic formulation of the traffic-theoretic link transmission model. The proposed network model is scalable and computationally efficient, making it suitable for large-scale network optimization. For a network with $r$ links, each of space capacity $\ell$, the model has a complexity of $\mathcal{O}(r\ell)$. The network model yields the marginal distribution of link states. The model is validated versus a simulation-based network implementation of the stochastic link transmission model. The validation experiments consider a set of small network with intricate traffic dynamics. For all scenarios, the proposed model accurately captures the traffic dynamics. The network model is used to address a signal control problem. The case study highlights the added value of using between-link (i.e., across-node) interaction information for traffic management.
翻译:本文侧重于车辆交通分析概率模型的分析性模型。 它开发了一个节点模型。 然后它通过将节点模型与Lu和Osorio(2018年)链接模型的链接模型(2018年)相结合来开发一个网络模型。 这是交通- 理论连接传输模型的随机配方。 拟议的网络模型可以缩放, 并具有计算效率, 使之适合大规模网络优化。 对于一个有美元链接的网络, 每个空间能力单位$ 。 该模型的复杂度是$\mathcal{O}(r\ell)$。 网络模型产生链接状态的边际分布。 该模型经过验证, 而不是模拟地网络实施Stochacet连接传输模型。 验证实验考虑了一组具有复杂交通动态的小网络。 对于所有情景, 拟议的模型准确捕捉了交通动态。 网络模型用于解决信号控制问题。 案例研究强调使用连接( 即跨诺德) 互动信息对交通管理产生的附加价值。