Rehabilitation research focuses on determining the components of a treatment intervention, the mechanism of how these components lead to recovery and rehabilitation, and ultimately the optimal intervention strategies to maximize patients' physical, psychologic, and social functioning. Traditional randomized clinical trials that study and establish new interventions face several challenges, such as high cost and time commitment. Observational studies that use existing clinical data to observe the effect of an intervention have shown several advantages over RCTs. Electronic Health Records (EHRs) have become an increasingly important resource for conducting observational studies. To support these studies, we developed a clinical research datamart, called ReDWINE (Rehabilitation Datamart With Informatics iNfrastructure for rEsearch), that transforms the rehabilitation-related EHR data collected from the UPMC health care system to the Observational Health Data Sciences and Informatics (OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) to facilitate rehabilitation research. The standardized EHR data stored in ReDWINE will further reduce the time and effort required by investigators to pool, harmonize, clean, and analyze data from multiple sources, leading to more robust and comprehensive research findings. ReDWINE also includes deployment of data visualization and data analytics tools to facilitate cohort definition and clinical data analysis. These include among others the Open Health Natural Language Processing (OHNLP) toolkit, a high-throughput NLP pipeline, to provide text analytical capabilities at scale in ReDWINE. Using this comprehensive representation of patient data in ReDWINE for rehabilitation research will facilitate real-world evidence for health interventions and outcomes.
翻译:康复研究旨在确定治疗干预的组成部分、这些组成部分如何导致康复,以及最终的最佳干预策略,以最大化患者的身体、心理和社会功能。传统的随机临床试验研究和确立新型干预措施面临着诸多挑战,例如高昂的成本和时间投入。利用现有临床数据的观察性研究比随机临床试验显示出更多优势。电子病历已成为进行观察性研究的日益重要资源。为支持这些研究,我们开发了一个名为ReDWINE(具备信息学基础的康复研究数据仓库)的临床研究数据仓库,该仓库将来自UPMC医疗保健系统的康复相关电子病历数据转换为O可观察性医学结果伙伴计划(OMOP)通用数据模型(CDM),以促进康复研究。ReDWINE中存储的标准化电子病历数据进一步减少了研究人员汇集、协调、清洗和分析多个来源数据所需的时间和精力,从而导致更加健壮和全面的研究结果。ReDWINE还包括部署数据可视化和数据分析工具,以促进队列定义和临床数据分析。这些工具包含了Open Health自然语言处理(OHNLP)工具包,一个高吞吐量的NLP管道,以在ReDWINE中提供大规模的文本分析能力。使用ReDWINE中的这些全面的患者数据进行康复研究,将有助于提供有关健康干预和结果的真实世界证据。