In this work we consider the problem of releasing a differentially private statistical summary that resides on a Riemannian manifold. We present an extension of the Laplace or K-norm mechanism that utilizes intrinsic distances and volumes on the manifold. We also consider in detail the specific case where the summary is the Fr\'echet mean of data residing on a manifold. We demonstrate that our mechanism is rate optimal and depends only on the dimension of the manifold, not on the dimension of any ambient space, while also showing how ignoring the manifold structure can decrease the utility of the sanitized summary. We illustrate our framework in two examples of particular interest in statistics: the space of symmetric positive definite matrices, which is used for covariance matrices, and the sphere, which can be used as a space for modeling discrete distributions.
翻译:在这项工作中,我们考虑了发布存在于里伊曼多元上的有差别的私人统计摘要的问题。我们介绍了拉帕特或K-诺姆机制的延伸,它利用了多元的内在距离和数量。我们还详细考虑了摘要是多元数据Fr\'echet平均值的具体案例。我们证明,我们的机制是最佳速率,仅取决于多元的尺寸,而不是任何环境空间的尺寸,同时也显示了无视多元结构如何降低已消毒摘要的效用。我们用两个对统计特别感兴趣的例子来说明我们的框架:用于共变矩阵的对称正确定矩阵空间,以及可用作构建离散分布模型的空间。