While comparing multiple groups of subjects, covariate imbalance generates confounding and results in biased comparisons of outcomes. Weighting approaches based on propensity scores facilitate unconfounded comparisons in an implicit target population. However, existing approaches cannot (i) directly or efficiently analyze multiple observational studies with three or more groups, (ii) provide meaningful answers, because their target populations may differ considerably from the population of interest, or (iii) deliver precise inferences using censored survival outcomes for a wide variety of estimands. We design generalized balancing weights and construct target populations that incorporate researcher-specified characteristics of the larger population of interest, synthesize information from the different cohorts of subjects, and appropriately compensate for any over- or under-represented groups to achieve covariate balance. The constructed target population, termed concordant target population is agnostic to specific estimators, estimands, and outcomes because it maximizes the effective sample size (ESS) to deliver inferences for different estimands in a realistic natural population. For finding the concordant population, theoretical results identify the global maximum of ESS for a conditional target density, allowing the remaining iterative procedure to involve straightforward parametric optimization. Simulation studies and analyses of TCGA databases illustrate the proposed strategy's practical advantages relative to existing weighting techniques
翻译:在比较不同对象群的同时,差异性不平衡会引起混乱,导致对结果的偏差比较; 以倾向性分数为基础的加权方法有助于在隐含的目标人群中进行无根据的比较; 但是,现有方法不能(一) 直接或有效地分析与三个或三个以上群体进行的多观察研究;(二) 提供有意义的答案,因为其目标人群可能与感兴趣的人群有很大差异,或(三) 利用各种估计对象的受审查的生存结果提供精确的推论; 我们设计了普遍平衡的权重,并构建了目标人群,这些人群包括了较大利益群体研究人员的特定特征,综合了不同对象群的信息,并适当补偿了任何代表过多或代表不足的群体,以实现共同变差的平衡; 构建的目标人群,称一致的目标人群对特定估计者、估计和结果可能有很大差异; 或者(三) 提供精确的推论,因为将有效抽样规模最大化(ESS),为现实的自然人口中的不同估计值提供推论; 为了寻找一致人口,理论结果,确定全球最高程度的SESSSSS的相对比重,以便进行最精确地分析。