In this work, we prove a hypercontractive inequality for matrix-valued functions defined over large alphabets, generalizing a result of Ben-Aroya, Regev, de Wolf (FOCS'08) for the Boolean alphabet. To obtain our result we generalize the powerful $2$-uniform convexity inequality for trace norms of Ball, Carlen, Lieb (Inventiones Mathematicae'94). We give two applications of this hypercontractive inequality. Locally decodable codes (LDC): we present a lower bound for LDCs over large alphabets. An LDC $C:\mathbb{Z}_r^n\to \mathbb{Z}_r^N$ encodes $x\in\mathbb{Z}_r^n$ into a codeword $C(x)$ such that one can recover any $x_i$ (with probability at least $1/r+\varepsilon$) by making a few queries to a corrupted codeword. The main question is the trade-off between $N$ and $n$. By using hypercontractivity, we prove that $N=2^{\Omega(\varepsilon^4 n/r^4)}$ for $2$-query (possibly non-linear) LDCs over $\mathbb{Z}_r$. Previously exponential lower bounds were known for $r=2$ (Kerenidis and de Wolf (JCSS'04)) and for linear codes (Dvir and Shpilka (SICOMP'07)). Streaming algorithms: we present upper and lower bounds for the communication complexity of the Hidden Hypermatching problem when defined over large alphabets, which generalizes the well-known Boolean Hidden Matching problem. We then consider streaming algorithms for approximating the value of Unique Games on a $t$-hyperedge hypergraph: a simple edge-counting argument gives an $r$-approximation with $O(\log{n})$ space. On the other hand, we use our communication lower bound to show that any streaming algorithm in the adversarial model achieving a $(r-\varepsilon)$-approximation requires $\Omega(n^{1-1/t})$ classical or $\Omega(n^{1-2/t})$ quantum space. In this setting, these results simplify and generalize the seminal work of Kapralov, Khanna and Sudan (SODA'15) and Kapravol and Krachun (STOC'19) when $r=2$.
翻译:在这项工作中,我们证明,对于以大字母定义的矩阵价值函数来说,我们是一种超常规的不平等,将Ben-Aroya, Regev, de Wolf (FOCS'08) 的Ben-Aroya, Regev, de Wolf (FOCS'08) 的结果普遍化。为了获得我们的结果,我们将强大的2美元一致的公式不平等化为Ball, Carren, Lieb (Preventees Mathematicae'94) 的追踪规范。我们给这个超常规不平等的两个应用。当地可调解码(LDC):我们为最不发达国家提供的是一个比大字母(美元) 更低的汇率化。一个最不发达国家: 美元=2美元 Comliderbb_r\\ 美元 美元 代码化。当我们用一个更低的模型来回收任何美元(至少1美元/rqrvareplacelononalation) 。对于一个腐败的代码来说,主要的问题在于美元和美元之间的交易。 。 。通过使用超收缩化的汇率的汇率,我们现在的汇率,我们用一个数字的汇率来计算。