Let $M=(m_{ij})$ be a symmetric matrix of order $n$ whose elements lie in an arbitrary field $\mathbb{F}$, and let $G$ be the graph with vertex set $\{1,\ldots,n\}$ such that distinct vertices $i$ and $j$ are adjacent if and only if $m_{ij} \neq 0$. We introduce a dynamic programming algorithm that finds a diagonal matrix that is congruent to $M$. If $G$ is given with a tree decomposition $\mathcal{T}$ of width $k$, then this can be done in time $O(k|\mathcal{T}| + k^2 n)$, where $|\mathcal{T}|$ denotes the number of nodes in $\mathcal{T}$. Among other things, this allows one to compute the determinant, the rank and the inertia of a symmetric matrix in time $O(k|\mathcal{T}| + k^2 n)$.


翻译:Let $M= (m ⁇ ij}\ neq 0美元) 是一个对称的顺序矩阵 $n 美元,其元素位于任意字段 $\ mathbb{F} 美元, 并且让$G$ 成为以顶点设定$$1,\\ldots, n ⁇ $1, 这样不同的脊椎美元和$j$是相邻的。 我们引入一个动态的编程算法, 找到一个与 $ 相匹配的对数矩阵 。 如果将$G$与宽度 $\ mathcal{T} 的树分解成 $1, 美元, 那么可以按时间 $O( káthcal{T}} + k ⁇ 2 n) 美元进行, 美元=mathcal{T} $_ 美元表示以 $\mathcal{ t} n 的节点数。 除其他外, 允许一个人在时间 $O (k\\\\\\\\\\\\\\\\\ k2 n \\\ n \\) 中对称矩阵矩阵的确定、 级和惯性矩阵的惯性矩阵的惯性。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】机器学习Primer,122页pdf
专知会员服务
106+阅读 · 2020年10月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月23日
Arxiv
0+阅读 · 2021年12月23日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员