A composite likelihood is a combination of low-dimensional likelihood objects useful in applications where the data have complex structure. Although composite likelihood construction is a crucial aspect influencing both computing and statistical properties of the resulting estimator, currently there does not seem to exist a universal rule to combine low-dimensional likelihood objects that is statistically justified and fast in execution. This paper develops a methodology to select and combine the most informative low-dimensional likelihoods from a large set of candidates while carrying out parameter estimation. The new procedure minimizes the distance between composite likelihood and full likelihood scores subject to a constraint representing the afforded computing cost. The selected composite likelihood is sparse in the sense that it contains a relatively small number of informative sub-likelihoods while the noisy terms are dropped. The resulting estimator is found to have asymptotic variance close to that of the minimum-variance estimator constructed using all the low-dimensional likelihoods.


翻译:复合可能性是数据结构复杂的应用中有用的低维可能性对象的组合。虽然复合可能性构造是影响计算和统计结果估计器的特性的一个关键方面,但目前似乎并不存在将统计上合理和快速执行的低维可能性对象结合起来的普遍规则。本文开发了一种方法,在进行参数估计时,从大量候选人中选择和综合最丰富的低维可能性。新的程序尽量减少复合可能性和受可提供计算成本制约的全概率分数之间的距离。选定的复合可能性很少,因为它包含数量相对较少的信息次相似性,而噪音的术语则被删除。结果的估计值与利用所有低维可能性构建的最低差异值相近。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2020年1月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月3日
Arxiv
0+阅读 · 2021年8月2日
Arxiv
0+阅读 · 2021年8月2日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员