Datamation is designed to animate an analysis pipeline step by step, which is an intuitive and effective way to interpret the results from data analysis. However, creating a datamation is not easy. A qualified datamation needs to not only provide a correct analysis result but also ensure that the data flow and animation are coherent. Existing animation authoring tools focus on either leveraging algorithms to automatically generate an animation based on user-provided charts or building graphical user interfaces to provide a programming-free authoring environment for users. None of them are able to help users translate an analysis task into a series of data operations to form an analysis pipeline and visualize them as a datamation. To fill this gap, we introduce Urania, an intelligent authoring tool developed to support datamation design and generation. It leverages a novel data query decomposition model to allow users to generate an initial datamation by simply inputting a data query in natural language. The initial datamation can be refined via rich interactions and a feedback mechanism is utilized to update the decomposition model based on user knowledge and preferences. Our system produces an animated sequence of visualizations driven by a set of low-level data actions. It supports unit visualizations, which provide a mapping from each data item to a unique visual mark. We demonstrate the effectiveness of Urania via a series of evaluations including case studies, performance validation, and a controlled user study.
翻译:Datamation旨在逐步动画化分析流程,是一种直观有效的解释数据分析结果的方式。然而,创建Datamation并不容易。一个合格的Datamation不仅需要提供正确的分析结果,还需确保数据流和动画的连贯性。现有的动画创作工具主要聚焦于利用算法根据用户提供的图表自动生成动画,或者构建图形用户界面为用户提供无需编程的创作环境。这些工具都无法帮助用户将分析任务转化为一系列数据操作,形成分析流程,并以Datamation的形式可视化展现。为了填补这一空白,我们介绍了Urania这一智能创作工具,用于支持Datamation的设计和生成。它利用一种新颖的数据查询分解模型,允许用户通过自然语言输入数据查询来生成一个初始的Datamation。用户可以通过丰富的交互进一步完善初始的Datamation,而反馈机制则用于根据用户的知识和偏好更新分解模型。我们的系统产生一系列受到一组低级数据操作驱动的可视化动画序列。它支持单元可视化,为每个数据项提供到唯一可视标记的映射。我们通过一系列评估(包括案例研究、性能验证和一项受控用户研究)展示了Urania的有效性。