We propose a simple yet efficient anchor-free instance segmentation, called CenterMask, that adds a novel spatial attention-guided mask (SAG-Mask) branch to anchor-free one stage object detector (FCOS) in the same vein with Mask R-CNN. Plugged into the FCOS object detector, the SAG-Mask branch predicts a segmentation mask on each box with the spatial attention map that helps to focus on informative pixels and suppress noise. We also present an improved VoVNetV2 with two effective strategies: adds (1) residual connection for alleviating the saturation problem of larger VoVNet and (2) effective Squeeze-Excitation (eSE) deals with the information loss problem of original SE. With SAG-Mask and VoVNetV2, we deign CenterMask and CenterMask-Lite that are targeted to large and small models, respectively. CenterMask outperforms all previous state-of-the-art models at a much faster speed. CenterMask-Lite also achieves 33.4\% mask AP / 38.0\% box AP, outperforming the state-of-the-art by 2.6 / 7.0 AP gain, respectively, at over 35fps on Titan Xp. We hope that CenterMask and VoVNetV2 can serve as a solid baseline of real-time instance segmentation and backbone network for various vision tasks, respectively. Code will be released.
翻译:我们提议一个简单而高效的无锚实例分解器,称为CenterMask,这增加了一个新的空间引线掩码(SAG-Mask)分支,与Mask R-CNN相同,使一个级物体探测器(FOS)处于无锚状态。 将SAG-Mask分会插入FCOS天体探测器,SAG-Mask分会预测每个盒子上有一个分解面罩,带有空间关注地图,有助于关注信息像素和抑制噪音。我们还提出了一个改进的VVVNetV2,并有两项有效的战略:(1) 用于缓解大型VVOVNet网络饱和问题的新空间引导掩码(SAG-Mask-Mask)分支;(2) 有效的Squeze-Expation(eOS)处理原始SE的信息丢失问题。SAG-Mask和VVNetV2分会分别针对大模型和小模型。 CentreMask超越了以往所有最先进的模型模型,速度要快得多。 中心还将实现AP/38.0xbox AS-creal asion AP-creal asional sal asional sal asional sal sal asional asional asional asional.