This paper introduces a new representation for the actions of a market maker in an order-driven market. This representation uses scaled beta distributions, and generalises three approaches taken in the artificial intelligence for market making literature: single price-level selection, ladder strategies and "market making at the touch". Ladder strategies place uniform volume across an interval of contiguous prices. Scaled beta distribution based policies generalise these, allowing volume to be skewed across the price interval. We demonstrate that this flexibility is useful for inventory management, one of the key challenges faced by a market maker. In this paper, we conduct three main experiments: first, we compare our more flexible beta-based actions with the special case of ladder strategies; then, we investigate the performance of simple fixed distributions; and finally, we devise and evaluate a simple and intuitive dynamic control policy that adjusts actions in a continuous manner depending on the signed inventory that the market maker has acquired. All empirical evaluations use a high-fidelity limit order book simulator based on historical data with 50 levels on each side.
翻译:本文介绍了市场制造者在有秩序驱动的市场中的行为的新代表。 这个代表使用比例化的贝塔分布,并概括了在市场制造文献人工智能中采用的三种方法:单一价格水平的选择、阶梯战略和“触摸中的市场制造 ” 。 梯子战略在相连价格的间隔中设定了统一的体积。 基于乙型分布的缩放政策概括了这些内容,允许数量在价格间隔之间倾斜。 我们证明这种灵活性对库存管理有用,这是市场制造者面临的主要挑战之一。 在本文中,我们进行了三项主要实验:首先,我们比较了我们更灵活的乙型行动与梯子战略的特殊案例;然后,我们调查了简单固定分配的绩效;最后,我们设计并评估了一种简单和不直观的动态控制政策,根据市场制造者获得的已签名清单不断调整行动。 所有经验评估都使用基于历史数据、每面50级的高纤维定单模拟器。