Quality of Service (QoS) prediction is an essential task in recommendation systems, where accurately predicting unknown QoS values can improve user satisfaction. However, existing QoS prediction techniques may perform poorly in the presence of noise data, such as fake location information or virtual gateways. In this paper, we propose the Probabilistic Deep Supervision Network (PDS-Net), a novel framework for QoS prediction that addresses this issue. PDS-Net utilizes a Gaussian-based probabilistic space to supervise intermediate layers and learns probability spaces for both known features and true labels. Moreover, PDS-Net employs a condition-based multitasking loss function to identify objects with noise data and applies supervision directly to deep features sampled from the probability space by optimizing the Kullback-Leibler distance between the probability space of these objects and the real-label probability space. Thus, PDS-Net effectively reduces errors resulting from the propagation of corrupted data, leading to more accurate QoS predictions. Experimental evaluations on two real-world QoS datasets demonstrate that the proposed PDS-Net outperforms state-of-the-art baselines, validating the effectiveness of our approach.
翻译:暂无翻译