Automatic post-editing (APE) is an important remedy for reducing errors of raw translated texts that are produced by machine translation (MT) systems or software-aided translation. In this paper, we present the first attempt to tackle the APE task for Vietnamese. Specifically, we construct the first large-scale dataset of 5M Vietnamese translated and corrected sentence pairs. We then apply strong neural MT models to handle the APE task, using our constructed dataset. Experimental results from both automatic and human evaluations show the effectiveness of the neural MT models in handling the Vietnamese APE task.
翻译:自动编辑后编辑(APE)是减少机器翻译系统或软件辅助翻译产生的原始翻译文本错误的重要补救方法,本文首次尝试为越南人完成APE任务。具体地说,我们建造了第一个5M越南人经翻译和校正的判刑配对的大规模数据集。然后,我们运用强大的神经MT模型处理APE任务,使用我们建造的数据集。自动和人文评估的实验结果显示神经MT模型在处理越南人经翻译和校正的判决方面的有效性。