The bus system is a critical component of sustainable urban transportation. However, due to the significant uncertainties in passenger demand and traffic conditions, bus operation is unstable in nature and bus bunching has become a common phenomenon that undermines the reliability and efficiency of bus services. Despite recent advances in multi-agent reinforcement learning (MARL) on traffic control, little research has focused on bus fleet control due to the tricky asynchronous characteristic -- control actions only happen when a bus arrives at a bus stop and thus agents do not act simultaneously. In this study, we formulate route-level bus fleet control as an asynchronous multi-agent reinforcement learning (ASMR) problem and extend the classical actor-critic architecture to handle the asynchronous issue. Specifically, we design a novel critic network to effectively approximate the marginal contribution for other agents, in which graph attention neural network is used to conduct inductive learning for policy evaluation. The critic structure also helps the ego agent optimize its policy more efficiently. We evaluate the proposed framework on real-world bus services and actual passenger demand derived from smart card data. Our results show that the proposed model outperforms both traditional headway-based control methods and existing MARL methods.


翻译:公交系统是可持续城市交通的重要组成部分,然而,由于客运需求和交通条件的不确定性很大,公交业务的性质不稳定,公交系统已成为破坏公交服务的可靠性和效率的常见现象。尽管最近在多剂强化学习(MARL)交通控制方面有所进展,但几乎没有研究侧重于公交车队控制,原因是车的复杂性特征 -- -- 控制行动只有在公交车到达公共汽车站时才会发生,因此代理商无法同时行动。在本研究中,我们把路线一级的公交车队控制作为一种不同步的多剂强化学习(ASMR)问题,并将经典的行为者-批评结构扩大到处理公交服务的可靠性和效率。具体地说,我们设计了一个新型的批评网络,以有效接近其他代理商的边际贡献,其中将注意力神经网络用于为政策评价进行导导电学习。批评结构还有助于利于自我代理商更有效率地优化其政策。我们评估了关于现实世界公交服务和实际乘客需求的拟议框架,以及从智能卡片数据中得出的实际乘客需求。我们的结果显示,拟议的模型超越了传统的进度控制方法和现有MAR控制方法。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
130+阅读 · 2020年5月14日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2018年12月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员