Continual learning (CL) is under-explored in the video domain. The few existing works contain splits with imbalanced class distributions over the tasks, or study the problem in unsuitable datasets. We introduce vCLIMB, a novel video continual learning benchmark. vCLIMB is a standardized test-bed to analyze catastrophic forgetting of deep models in video continual learning. In contrast to previous work, we focus on class incremental continual learning with models trained on a sequence of disjoint tasks, and distribute the number of classes uniformly across the tasks. We perform in-depth evaluations of existing CL methods in vCLIMB, and observe two unique challenges in video data. The selection of instances to store in episodic memory is performed at the frame level. Second, untrimmed training data influences the effectiveness of frame sampling strategies. We address these two challenges by proposing a temporal consistency regularization that can be applied on top of memory-based continual learning methods. Our approach significantly improves the baseline, by up to 24% on the untrimmed continual learning task. To streamline and foster future research in video continual learning, we will publicly release the code for our benchmark and method.
翻译:持续学习(CL) 在视频领域探索不足。 少数现有作品包含与任务分类分配不平衡的分类分布, 或研究不合适的数据集问题。 我们引入 vCLIMB, 一个新视频持续学习基准。 vCLIMB 是用于分析在视频持续学习中灾难性地忘记深层模型的标准化测试床。 与先前的工作相比, 我们侧重于以经过不同任务序列培训的模型进行班级递增持续学习, 并在任务之间统一分配班级数量。 我们对VCLIMB 中的现有 CL 方法进行了深入的评估, 并观察了视频数据方面的两个独特的挑战。 在框架级别上, 选择了存储缓存记忆的实例。 第二, 未剪裁的培训数据影响框架抽样战略的有效性。 我们通过提出时间一致性规范来应对这两个挑战, 可以在基于记忆的持续学习方法上应用。 我们的方法极大地改进了基线, 在未剪接的持续学习任务上达到24%。 为了精简和促进视频持续学习的未来研究, 我们将公开发布我们基准和方法的代码 。