Utilizing intelligent reflecting surface (IRS) was proven to be efficient in improving the energy efficiency for wireless networks. In this paper, we investigate the passive beamforming and channel estimation for IRS assisted wireless communications with low-resolution analog-to-digital converters (ADCs) at the receiver. We derive the approximate achievable rate by using the Bussgang theorem. Based on the derived analytical achievable rate expression, we maximize the achievable rate by using semidefinite programming (SDP), branch-and-bound (BB), and gradient-based approaches. A maximum likelihood (ML) estimator is then proposed for channel estimation by considering the $\mathrm{1}$-bit quantization ADC. Numerical result shows that the proposed beamforming design and channel estimation method significantly outperforms the existing methods.
翻译:利用智能反射表面(IRS)被证明是提高无线网络能源效率的有效方法。在本文中,我们调查了接收器内IRS辅助低分辨率模拟数字转换器(ADCs)的被动波束成形和频道估计,我们通过使用Bussgang理论体得出了近似可实现的速率。根据所得出的分析可实现速率表达法,我们通过使用半无线编程(SDP)、分支和约束(BB)和梯度方法,最大限度地实现可实现的速率。然后,通过考虑 $\mathrm{1}$-bit 夸度ADC,提出了频道估计的最大可能性(ML)估测器。数字结果显示,拟议的波形设计和通道估计方法大大优于现有方法。