High-throughput data collection techniques and largescale (cloud) computing are transforming our understanding of ecosystems at all scales by allowing the integration of multimodal data such as physics, chemistry, biology, ecology, fishing, economics and other social sciences in a common computational framework. We focus in this paper on a large scale data assimilation and prediction backbone based on Deep Stacking Networks (DSN) in the frame of the IDEA (Island Digital Ecosystem Avatars) project (Moorea Island), based on the subdivision of the island in watersheds and lagoon units. We also describe several kinds of raw data that can train and constrain such an ecosystem avatar model, as well as second level data such as ecological or physical indexes / indicators.
翻译:高载量数据收集技术和大规模(巨型)计算正在改变我们对各种规模生态系统的理解,允许将物理学、化学、生物学、生态学、渔业、经济学和其他社会科学等多式联运数据纳入一个共同的计算框架,我们在本文件中着重论述在IDEA(Island Digital Evenical Systems Avatars)项目(Moorea Island Digital Systems Avatars Island)框架内,基于岛屿在流域和环礁单位的细分,在深堆网(DSN)框架内,在大规模数据同化和预测主干(DSN)项目(Moorea Island Digital Systems Avatars)框架内,在大规模数据同化和预测主干(Island Digal Digal System Avatars)项目(Moorea Island)项目(Moorea Island Dimitive Systems)项目框架内,在多个流域和环礁区单位中,将之类数据纳入共同计算中,从而将物理学、化学、化学、化学、生物学、生物学、生物学、生物学、生物学、生物学、生物学、生物学、生态、生态、生态、生态、生态、渔业、渔业、渔业、渔业、渔业、渔业、渔业、渔业、渔业、渔业、经济、经济、经济、经济、经济、经济、经济和其他科学、经济和其他社会科学、经济等等数据等数据。