In this paper we derive formulas for the N-point discrete Fourier transform and the R1 x R2 finite Zak transform of multiplicative characters on Z/N, where N is an odd integer, and R1 and R2 are co-prime factors of N. In one special case this permits computation of the discrete Fourier transform and the finite Zak transform of the Jacobi symbol, the modified Jacobi sequence, and the Golomb sequence. In other cases, not addressed here, this permits computation of the discrete Fourier transform and the finite Zak transform of certain complex-valued sequences. These results constitute, to our knowledge, the first unified treatment of key Fourier and Zak space properties of multiplicative characters. These results also provide a convenient framework for the design of new character-based sequences.
翻译:在本文中,我们为N点离散Fourier变换和R1xR2有限Zak变换Z/N(N是奇数整数)和R1和R2(R2是N)的倍数字符变换得出公式。在一个特殊案例中,可以计算离散Fourier变换和Jacobi符号的有限的Zak变换、经修改的Jacobi序列和Golomb序列。在其他情况下,这里没有涉及,可以计算离散Fourier变换和某些复杂定值序列的有限的Zak变换。据我们所知,这些结果构成了对重数字符的Fourier和Zak空间特性的第一次统一处理。这些结果还为设计新的基于字符的序列提供了一个方便的框架。