We propose a novel framework for Network Stochastic Differential Equations (N-SDE), where each node in a network is governed by an SDE influenced by interactions with its neighbors. The evolution of each node is driven by the interplay of three key components: the node's intrinsic dynamics (\emph{momentum effect}), feedback from neighboring nodes (\emph{network effect}), and a \emph{stochastic volatility} term modeled by Brownian motion. Our primary objective is to estimate the parameters of the N-SDE system from high-frequency discrete-time observations. The motivation behind this model lies in its ability to analyze very high-dimensional time series by leveraging the inherent sparsity of the underlying network graph. We consider two distinct scenarios: \textit{i) known network structure}: the graph is fully specified, and we establish conditions under which the parameters can be identified, considering the linear growth of the parameter space with the number of edges. \textit{ii) unknown network structure}: the graph must be inferred from the data. For this, we develop an iterative procedure using adaptive Lasso, tailored to a specific subclass of N-SDE models. In this work, we assume the network graph is oriented, paving the way for novel applications of SDEs in causal inference, enabling the study of cause-effect relationships in dynamic systems. Through extensive simulation studies, we demonstrate the performance of our estimators across various graph topologies in high-dimensional settings. We also showcase the framework's applicability to real-world datasets, highlighting its potential for advancing the analysis of complex networked systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 3月11日
Arxiv
27+阅读 · 2021年11月11日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 3月11日
Arxiv
27+阅读 · 2021年11月11日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员