This article investigates on the improvement and stabilization of alternating current (AC) and direct current (DC) output voltages in a Permanent Magnet Synchronous Generator (PMSG) driven by a vertical-axis tidal turbine using advanced control strategies. The research integrates artificial intelligence (AI)-based techniques to enhance voltage stability and efficiency. Initially, the Maximum Power Point Tracking (MPPT) approach based on Tip Speed Ratio (TSR) and Artificial Neural Network (ANN) Fuzzy logic controllers is explored. To further optimize the performance, Particle Swarm Optimization (PSO) and a hybrid ANN-PSO methodology are implemented. These strategies aim to refine the reference rotational speed of the turbine while minimizing deviations from optimal power extraction conditions. The simulation results of a tidal turbine operating at a water flow velocity of 1.5 m/s demonstrate that the PSO-based control approach significantly enhances the voltage stability compared to conventional MPPT-TSR and ANN-Fuzzy controllers. The hybrid ANN-PSO technique improves the voltage regulation by dynamically adapting to system variations and providing real-time reference speed adjustments. This research highlights the AI-based hybrid optimization benefit to stabilize the output voltage of tidal energy systems, thereby increasing reliability and efficiency in renewable energy applications.


翻译:本文研究了采用先进控制策略改善和稳定由垂直轴潮汐涡轮机驱动的永磁同步发电机(PMSG)交流(AC)和直流(DC)输出电压的问题。该研究整合了基于人工智能(AI)的技术,以提升电压稳定性和效率。首先,探讨了基于叶尖速比(TSR)和人工神经网络(ANN)模糊逻辑控制器的最大功率点跟踪(MPPT)方法。为进一步优化性能,实施了粒子群优化(PSO)和一种混合ANN-PSO方法。这些策略旨在优化涡轮机的参考转速,同时最小化与最佳功率提取条件的偏差。在水流速度为1.5 m/s条件下运行的潮汐涡轮机的仿真结果表明,与传统的MPPT-TSR和ANN-Fuzzy控制器相比,基于PSO的控制方法显著增强了电压稳定性。混合ANN-PSO技术通过动态适应系统变化并提供实时参考速度调整,改善了电压调节性能。本研究强调了基于人工智能的混合优化在稳定潮汐能系统输出电压方面的优势,从而提高了可再生能源应用的可靠性和效率。

0
下载
关闭预览

相关内容

144页ppt《扩散模型》,Google DeepMind Sander Dieleman
专知会员服务
48+阅读 · 11月21日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员