Generative adversarial networks (GAN) are a class of powerful machine learning techniques, where both a generative and discriminative model are trained simultaneously. GANs have been used, for example, to successfully generate "deep fake" images. A recent trend in malware research consists of treating executables as images and employing image-based analysis techniques. In this research, we generate fake malware images using auxiliary classifier GANs (AC-GAN), and we consider the effectiveness of various techniques for classifying the resulting images. Our results indicate that the resulting multiclass classification problem is challenging, yet we can obtain strong results when restricting the problem to distinguishing between real and fake samples. While the AC-GAN generated images often appear to be very similar to real malware images, we conclude that from a deep learning perspective, the AC-GAN generated samples do not rise to the level of deep fake malware images.
翻译:生成对抗性网络(GAN)是一组强大的机器学习技术,其中同时培训一种基因化和歧视性模式。例如,GAN被用于成功生成“深层假”图像。最新的恶意软件研究趋势包括将可执行软件作为图像处理和使用基于图像的分析技术。在这项研究中,我们使用辅助分类器GAN(AC-GAN)生成假恶意软件图像,我们考虑了对产生的图像进行分类的各种技术的有效性。我们的结果表明,由此产生的多级分类问题具有挑战性,但在将问题限制在真实和假的样本之间时,我们可以获得强有力的结果。虽然AC-GAN生成的图像似乎与真实的恶意软件图像非常相似,但我们的结论是,从深层学习的角度看,AC-GAN生成的样本并没有上升到深层的虚假恶意软件图像的水平。