Two of the most significant challenges in uncertainty quantification pertain to the high computational cost for simulating complex physical models and the high dimension of the random inputs. In applications of practical interest, both of these problems are encountered, and standard methods either fail or are not feasible. To overcome the current limitations, we present a generalized formulation of a Bayesian multi-fidelity Monte-Carlo (BMFMC) framework that can exploit lower-fidelity model versions in a small data regime. The goal of our analysis is an efficient and accurate estimation of the complete probabilistic response for high-fidelity models. BMFMC circumvents the curse of dimensionality by learning the relationship between the outputs of a reference high-fidelity model and potentially several lower-fidelity models. While the continuous formulation is mathematically exact and independent of the low-fidelity model's accuracy, we address challenges associated with the small data regime (i.e., only a small number of 50 to 300 high-fidelity model runs can be performed). Specifically, we complement the formulation with a set of informative input features at no extra cost. Despite the inaccurate and noisy information that some low-fidelity models provide, we demonstrate that accurate and certifiable estimates for the quantities of interest can be obtained for uncertainty quantification problems in high stochastic dimensions, with significantly fewer high-fidelity model runs than state-of-the-art methods for uncertainty quantification. We illustrate our approach by applying it to challenging numerical examples such as Navier-Stokes flow simulations and fluid-structure interaction problems.


翻译:不确定性量化方面两个最重大挑战涉及模拟复杂物理模型的计算成本高以及随机投入的高度。在实际应用中,遇到这些问题,遇到这些问题,标准方法要么失败,要么不可行。为了克服目前的局限性,我们提出了一个通用的巴伊西亚多信仰蒙特卡洛(BMFMC)框架,这个框架可以在一个小型数据系统中利用较低信仰模式版本。我们的分析目标是有效和准确地估计对高忠诚模型的全面概率反应。BMFMC在实际应用中避开了维度的诅咒,了解了高忠诚参考模型产出与可能若干较低忠诚模型之间的关系。尽管持续制定的方法在数学上准确且独立于低忠诚模型的准确性,但我们处理与小数据机制相关的挑战(也就是说,只有少量50至300种高忠诚模型可以运行 ) 。具体地说,我们补充了一套信息输入特征,没有额外的成本。尽管一些不准确和不精确的不确定性模型可以证明我们所获取的低信任度数据数量,但通过高透明度的量化方法,我们可以提供一些低信任度的准确性和高透明度模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
42+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月13日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员